

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level in Mechanics M3 (WME03) Paper 01

# **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.edexcel.com">www.edexcel.com</a>, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

January 2024

Question Paper Log Number P74324A

Publications Code WME03\_01\_2401\_MS

All the material in this publication is copyright

© Pearson Education Ltd 2024

# **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
   Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

# General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

#### 'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

#### 'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. MO A1 is impossible.

### 'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. - follow through - marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- \* means the answer is printed on the question paper
- means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

# General Principles for Mechanics Marking

(NB specific mark schemes may sometimes override these general principles)

- Rules for M marks:
  - o correct no. of terms;
  - o dimensionally correct;
  - o all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark, i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
  - o N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c)...then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft

## Mechanics Abbreviations

M(A) Taking moments about A.

N2L Newton's Second Law (Equation of Motion)

NEL Newton's Experimental Law (Newton's Law of Impact)

HL Hooke's Law

SHM Simple harmonic motion

PCLM Principle of conservation of linear momentum

RHS Right hand side

LHS Left hand side

| 10   |                                                                                                                                                |      | Form differential equation in wand                                                   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------|
| 1a   |                                                                                                                                                |      | Form differential equation in $v$ and $x$                                            |
|      | $m g R^2$ dy                                                                                                                                   |      | only. Need to see $\frac{dv}{dx}$ or $v\frac{dv}{dx}$                                |
|      | $-\frac{mgR^2}{2x^2} = mv\frac{dv}{dx}$                                                                                                        | M1   | Cannot get this mark using t.                                                        |
|      | $2x$ $\alpha$                                                                                                                                  |      | Allow with both <i>m</i> 's cancelled.                                               |
|      |                                                                                                                                                |      | Condone sign error.                                                                  |
|      | _                                                                                                                                              |      | Separate variables correctly and                                                     |
|      | $-\frac{gR^2}{2}\int \frac{1}{r^2} dx = \int v dv$                                                                                             | M1   | integrate at least one side.                                                         |
|      | $-\frac{1}{2}\int \frac{1}{x^2} dx = \int v dv$                                                                                                | 1011 | Cannot get this mark using <i>t</i> .                                                |
|      |                                                                                                                                                |      | Condone sign error.                                                                  |
|      |                                                                                                                                                |      | Obtain given answer from correct                                                     |
|      |                                                                                                                                                |      | work. Must include at least one line of                                              |
|      |                                                                                                                                                |      | working between integral and final answer. Correct signs seen throughout             |
|      |                                                                                                                                                |      | working.                                                                             |
|      |                                                                                                                                                |      |                                                                                      |
|      | $\alpha D^2$                                                                                                                                   |      | Condone $\frac{v^2}{2} = \frac{gR^2}{2x} + C$ followed by $v^2 = \frac{gR^2}{x} + C$ |
|      | $v^2 = \frac{gR^2}{r} + C^*$                                                                                                                   | A1*  | $\alpha R^2$                                                                         |
|      | x                                                                                                                                              |      | $v^2 = \frac{S^{A}}{r} + C$                                                          |
|      |                                                                                                                                                |      | Note: If the first line of working is                                                |
|      |                                                                                                                                                |      | 2                                                                                    |
|      |                                                                                                                                                |      | $\frac{1}{2}v^2 = -\int \frac{gR^2}{2x^2} dx$ followed by                            |
|      |                                                                                                                                                |      | integration of RHS, this scores                                                      |
|      |                                                                                                                                                |      | M0M1A0*                                                                              |
| ALT1 | $1 	 1 	 2 	 1 	 2 	 cgmR^2$ .                                                                                                                 |      | Form an energy equation with 2 KE                                                    |
| (a)  | $\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = \int \frac{gmR^2}{x^2} dx$                                                                                | M1   | terms and the integral of the variable                                               |
|      |                                                                                                                                                |      | force. Condone sign errors.                                                          |
|      | $\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = -\frac{gmR^2}{x} + A$                                                                                     | M1   | Integrate the force wrt $x$ . Condone sign                                           |
|      | <u> </u>                                                                                                                                       |      | Obtain given answer from correct                                                     |
|      | $\sigma R^2$                                                                                                                                   |      | Obtain given answer from correct work. Must include at least one line of             |
|      | $v^2 = \frac{gR^2}{r} + C^*$                                                                                                                   | A1*  | working and correct signs seen                                                       |
|      | X                                                                                                                                              |      | throughout working.                                                                  |
|      |                                                                                                                                                | [3]  |                                                                                      |
| b    | $x = 3R, v^2 = 3gR$                                                                                                                            | M1   | Use initial conditions to evaluate $C$                                               |
|      | $\lambda - 3\Lambda, V - 3g\Lambda$                                                                                                            | 1711 | in the given answer.                                                                 |
|      | $\Rightarrow C = 3a^{R} gR^{2} (-8gR)$                                                                                                         | A 1  | On aguivalant                                                                        |
|      | $\Rightarrow C = 3gR - \frac{gR^2}{3R} \left( = \frac{8gR}{3} \right)$                                                                         | A1   | Or equivalent                                                                        |
|      |                                                                                                                                                |      | $\sqrt{33gR}$                                                                        |
|      | $x = R \Rightarrow v = \sqrt{\frac{11gR}{3}}$                                                                                                  | A1   | Accept $\frac{\sqrt{33gR}}{3}$                                                       |
|      | $x \rightarrow x \rightarrow y \rightarrow $ |      | Answer must be in terms of $g$ and $R$                                               |
|      |                                                                                                                                                | [3]  | 1 man of months of guild it                                                          |
| ALT1 | Use of definite integral instead of                                                                                                            |      |                                                                                      |
| (b)  | finding $+ C$                                                                                                                                  |      |                                                                                      |
|      | $\lceil gR^2 \rceil^R$                                                                                                                         |      | Use initial conditions in a definite                                                 |
|      | $\left[v^2\right]_{\sqrt{3gR}}^v = \left \frac{gR^2}{x}\right _{3R}^{3R}$                                                                      | M1   | integral.                                                                            |
|      | $  \mathcal{N}  _{2p}$                                                                                                                         | 1    |                                                                                      |

| $v^2 - 3gR = \frac{gR^2}{R} - \frac{gR^2}{3R}$ | A1  | Or equivalent                                                     |
|------------------------------------------------|-----|-------------------------------------------------------------------|
| $v = \sqrt{\frac{11gR}{3}}$                    | A1  | Accept $\frac{\sqrt{33gR}}{3}$ Answer must be in terms of g and R |
|                                                | (6) |                                                                   |

| 2a | Change in GPE                                                                                                                                    | M1         | Condone sin / cos confusion         |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------|--|--|
| 24 | $= mg \times 1.3l \sin \theta (= 0.5lmg)$                                                                                                        | 1411       | Condone sin 7 cos confusion         |  |  |
|    | $-mg \times 1.3i \sin \theta (-0.3img)$                                                                                                          |            |                                     |  |  |
|    | $\int_{\text{EDE}} \lambda l^2 \exp \left[ \lambda (0.3l)^2 \right]$                                                                             | B1         | One correct term for EPE            |  |  |
|    | EPE = $\frac{\lambda l^2}{2l}$ or EPE = $\frac{\lambda (0.3l)^2}{2l}$<br>Energy equation B to A                                                  |            |                                     |  |  |
|    | Energy equation B to A                                                                                                                           | M1         | Dimensionally correct with all the  |  |  |
|    |                                                                                                                                                  |            | required terms. Condone sign errors |  |  |
|    |                                                                                                                                                  |            | and sin / cos confusion             |  |  |
|    | $\lambda I^2 = \lambda (0.3I)^2$                                                                                                                 | <b>A</b> 1 | Correct unsimplified equation       |  |  |
|    | $\frac{\lambda l^2}{2l} - \frac{\lambda (0.3l)^2}{2l} = 0.5 lmg$ $\Rightarrow \lambda = mg \frac{1}{1 - 0.09} = \frac{100}{91} mg$               |            |                                     |  |  |
|    | 1 100                                                                                                                                            | A1*        | Obtain given answer from correct    |  |  |
|    | $\Rightarrow \lambda = mg \frac{1}{1 - 0.09} = \frac{1}{91} mg$                                                                                  |            | working. Must see evidence of       |  |  |
|    | 2 2307                                                                                                                                           |            | simplification.                     |  |  |
|    |                                                                                                                                                  | [5]        |                                     |  |  |
| 2b | Equation of motion                                                                                                                               | M1         | Dimensionally correct with all the  |  |  |
|    |                                                                                                                                                  |            | required terms. Condone sign errors |  |  |
|    |                                                                                                                                                  |            | and sin/cos confusion.              |  |  |
|    | $T - mg\sin\theta = ma$                                                                                                                          | <b>A</b> 1 | Correct unsimplified equation       |  |  |
|    |                                                                                                                                                  |            | Correct unsimplified equation       |  |  |
|    | $\lambda \times l$ $ma \sin \theta - ma$                                                                                                         |            |                                     |  |  |
|    | $\frac{\lambda \times l}{l} - mg \sin \theta = ma$                                                                                               |            | Correct unsimplified equation with  |  |  |
|    | (100 5)                                                                                                                                          | <b>A</b> 1 | HL used to replace T                |  |  |
|    | $\left(\frac{100}{91}mg - \frac{5}{13}mg = ma\right)$                                                                                            |            | THE used to replace 1               |  |  |
|    | $a = \frac{5}{7}g$                                                                                                                               | A 1        | A 0 71 1 1                          |  |  |
|    | $a = \frac{5}{2}g$                                                                                                                               | A1         | Accept 0.71g or better.             |  |  |
|    | 78                                                                                                                                               |            | If $g = 9.8$ is used, accept 7.     |  |  |
|    | Note: If $\alpha = 0.81$ is used then penalise of                                                                                                | nce ner    | complete question                   |  |  |
|    | Note: If $g = 9.81$ is used then penalise once per complete question.<br>SHM equations can only be used if the motion is proven to be SHM first. |            |                                     |  |  |
|    |                                                                                                                                                  | [4]        |                                     |  |  |
|    |                                                                                                                                                  | (9)        |                                     |  |  |

| 3a | Moment of <i>S</i> about the <i>y</i> -axis                                                                                   | M1  | Use of formula $(\pi)(\rho) \int xy^2 dx$                                                                                                                                                                                                                                                                                          |
|----|-------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                               |     | No need to see the correct limits here. The curve equation must be substituted correctly and an attempt to integrate seen (at least one term must have a power of $x$ raised by 1) Note the correct expression for integrating is $x\left(\frac{1}{4}x(3-x)\right)^2 = \frac{1}{16}x^3(3-x)^2$ $= \frac{1}{16}(9x^3 - 6x^4 + x^5)$ |
|    |                                                                                                                               |     | 16 (511 511 7)                                                                                                                                                                                                                                                                                                                     |
|    | $= (\pi)(\rho) \frac{1}{16} \left[ \frac{9}{4} x^4 - \frac{6}{5} x^5 + \frac{1}{6} x^6 \right]$ $= \frac{31}{60} (\pi)(\rho)$ | A1  | Correct integrated expression.                                                                                                                                                                                                                                                                                                     |
|    | $=\frac{31}{60}(\pi)(\rho)$                                                                                                   | A1  | Correct use of correct limits (0 and 2). No need to see a line of working showing substitution of limits.  However, must see $\frac{31}{60}$ or                                                                                                                                                                                    |
|    |                                                                                                                               |     | equivalent numerical evaluation of integral.                                                                                                                                                                                                                                                                                       |
|    | $\overline{x} = \frac{\frac{31}{60}(\pi)(\rho)}{\frac{2}{5}(\pi)(\rho)}$                                                      | M1  | Complete method to find the distance. Formula must be the right way up $\overline{x} = \frac{(\pi)(\rho) \int xy^2 dx}{M}$ Must have consistent use of $\pi$ and of $\rho$ .                                                                                                                                                       |
|    | $=\frac{31}{24}$ *                                                                                                            | A1* | Obtain given answer from correct working                                                                                                                                                                                                                                                                                           |
|    |                                                                                                                               | [5] |                                                                                                                                                                                                                                                                                                                                    |
| 3b | Correct use of trig $ \frac{1}{2} $ $ \frac{1}{2} $                                                                           | M1  | Correct trig ratio to find a relevant angle, $\alpha^{\circ}$ or $(90-\alpha)^{\circ}$<br>Must use curve equation with $x=2$ and $\left(2-\frac{31}{24}\right)$                                                                                                                                                                    |
|    |                                                                                                                               | A 1 |                                                                                                                                                                                                                                                                                                                                    |
|    | $\tan \alpha^{\circ} = \frac{1}{2} \div \frac{17}{24} \left( = \frac{12}{17} \right)$                                         | A1  | Or equivalent. Condone reciprocal.                                                                                                                                                                                                                                                                                                 |
|    | $\alpha = 35$                                                                                                                 | A1  | 2 sf or better (35.2175)<br>A0 for use of radians.                                                                                                                                                                                                                                                                                 |
|    |                                                                                                                               | [3] |                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                                               | (8) |                                                                                                                                                                                                                                                                                                                                    |

| 4     | O 4a                                          |      | If angle is between incline and                                        |
|-------|-----------------------------------------------|------|------------------------------------------------------------------------|
| -     | R                                             |      |                                                                        |
|       | < r                                           |      | vertical then $\sin \theta = \frac{4}{5}, \cos \theta = \frac{3}{5}$   |
|       | $\theta$ $mg$                                 |      |                                                                        |
|       | Resolve vertically                            |      | Need all terms. Dimensionally                                          |
|       | •                                             | M1   | correct. Condone sign errors and                                       |
|       |                                               |      | sin/cos confusion.                                                     |
|       | $R\sin\theta = mg + F\cos\theta$              | A1   | Unsimplified equation with at most                                     |
|       |                                               |      | one error.                                                             |
|       |                                               | A1   | Correct unsimplified equation                                          |
|       | Equation for horizontal motion                |      | Need all terms. Dimensionally                                          |
|       |                                               |      | correct. Condone sign errors and                                       |
|       |                                               | M1   | sin/cos confusion. Accept any form                                     |
|       |                                               |      | of acceleration for the method mark                                    |
|       |                                               | A 1  | only.                                                                  |
|       | $R\cos\theta + F\sin\theta = mr\omega^2$      | A1   | Unsimplified equation with at most                                     |
|       |                                               |      | one error. Direction of F consistent                                   |
|       |                                               |      | with vertical resolution. Incorrect form of acceleration is one error. |
|       |                                               |      | form of acceleration is one error.                                     |
|       |                                               | A1   | Correct unsimplified equation                                          |
|       | Use of $F = \mu R$                            |      | Used, not just quoted.                                                 |
|       | ,                                             | M1   | $F = \frac{1}{R}$                                                      |
|       |                                               |      | F = -R                                                                 |
|       | Substitute for trig and solve for max         |      | Dependent on all preceding M                                           |
|       | $\omega$                                      |      | marks. If more than two equations                                      |
|       |                                               |      | are produced, the correct two must                                     |
|       |                                               | DM1  | be used.                                                               |
|       |                                               |      | $\begin{pmatrix} p & 20mg & 5mg \end{pmatrix}$                         |
|       |                                               |      | $\left(R = \frac{20mg}{13}, F = \frac{5mg}{13}\right)$                 |
|       | 16g                                           |      | Obtain given answer from correct                                       |
|       | $\Rightarrow \omega = \sqrt{\frac{16g}{13r}}$ | A1*  | working                                                                |
|       | ) IUI                                         |      |                                                                        |
|       |                                               | [9]  |                                                                        |
| Λ 1+1 | Haina NOL parallal and                        | (9)  | Nood all tarms Dimansionally                                           |
| Alt1  | Using N2L parallel and                        |      | Need all terms. Dimensionally correct. Condone sign errors and         |
|       | perpendicular to the incline.                 |      | sin/cos confusion. Note that the                                       |
|       |                                               |      | acceleration must have a sin/cos                                       |
|       |                                               |      | component. Accept any form of                                          |
|       | Perpendicular                                 | M1   | acceleration for the method mark                                       |
|       | $R - mg\sin\theta = mr\omega^2\cos\theta$     | A1A1 | only. Mark A's as above.                                               |
|       | ng sino – na w coso                           |      | , -:                                                                   |
|       | Parallel                                      |      | A1A0 Unsimplified equation with at                                     |
|       | $F + mg\cos\theta = mr\omega^2\sin\theta$     | M1   | most one error                                                         |
|       | $T + mg \cos \theta - m \theta \sin \theta$   | A1A1 | A1A1 Correct unsimplified equation                                     |
|       |                                               |      |                                                                        |

| 5                |                                                                                             |     | Curve equation                                                                                                  |
|------------------|---------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------|
|                  |                                                                                             |     | $x^2 + y^2 = r^2$                                                                                               |
| 5a               | Using x-axis                                                                                |     | Use of correct integral. Limits                                                                                 |
|                  | $(\rho) \int x \times 2\sqrt{r^2 - x^2}  \mathrm{d}x$                                       |     | not needed here.                                                                                                |
|                  | Or<br>Living a spirit                                                                       | M1  | Accept an integral of the form:<br>x-axis: $k \int x \sqrt{r^2 - x^2} dx$                                       |
|                  | Using y-axis $(\rho) \frac{1}{2} \int 2(\sqrt{r^2 - x^2})^2 dx$                             |     | y-axis: $k \int x \sqrt{r^2 - x^2} dx$                                                                          |
|                  | $x$ -axis $\frac{2}{3}$                                                                     |     |                                                                                                                 |
|                  | $= -\frac{2}{3}(\rho)(r^2 - x^2)^{\frac{3}{2}}$                                             | A1  | Correct integration, ignore limits. Correct expression.                                                         |
|                  | y-axis $= (\rho) \left( xr^2 - \frac{x^3}{3} \right)$ $= \frac{2}{3} (\rho) r^3$            |     | -                                                                                                               |
|                  | $=\frac{2}{3}(\rho)r^3$                                                                     | A1  | Correct use of limits, 0 and $r$ or $-r$ and $r$ .                                                              |
|                  | Using x-axis $\frac{1}{2}\pi r^2 \rho \overline{x} = \rho \int_{0}^{r} 2xy  dx$             |     | Complete method to obtain distance.                                                                             |
|                  | Using y-axis $\frac{1}{2}\pi r^2 \rho \overline{y} = \rho \frac{1}{2} \int_{-r}^{r} y^2 dx$ | M1  | Use of a correct formula, consistent with the axis and limits used, to find centre of mass with curve equation. |
|                  | or $\frac{1}{2}\pi r^2 \rho \overline{y} = \rho \int_0^r y^2 dx$                            |     | $\rho$ must appear on both sides or neither.                                                                    |
|                  | $\bar{x} = \frac{\frac{2}{3}r^3}{\frac{1}{2}\pi r^2} = \frac{4r}{3\pi}  *$                  | A1* | Obtain given answer from correct working                                                                        |
| ALT<br>1<br>5(a) | Parametric approach $x = r \cos \theta$ , $y = r \sin \theta$                               |     | Curve equation $x^2 + y^2 = r^2$                                                                                |
|                  | Using x-axis $2r^{3} \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta \cos \theta  d\theta$          |     | Use of correct integral. Limits not needed here.                                                                |
|                  | $2r \int_0^2 \sin \theta \cos \theta  d\theta$                                              | M1  | Accept an integral of the form: $kr^{3} \int \sin^{2}\theta \cos\theta  d\theta$                                |

|            | $=2r^3\left[\frac{\sin^3\theta}{3}\right]_0^{\frac{\pi}{2}}$                                                                                                      | A1       | Correct integration, ignore limits. Correct expression.                                                                                                                                                         |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | $=\frac{2}{3}r^3$                                                                                                                                                 | A1       | Correct use of limits                                                                                                                                                                                           |
|            | $= \frac{2}{3}r^3$ $\overline{x} = \frac{\frac{2}{3}r^3}{\frac{1}{2}\pi r^2}$                                                                                     | M1       | Complete method to obtain distance. Use of correct formula.  \$\rho\$ must appear on both sides or neither.                                                                                                     |
|            | $=\frac{4r}{3\pi}$ *                                                                                                                                              | A1*      | Obtain given answer from correct working                                                                                                                                                                        |
|            |                                                                                                                                                                   | [5]      |                                                                                                                                                                                                                 |
| ALT 2 5(a) | Using y-axis $r^3 \int_0^{\frac{\pi}{2}} \sin^3 \theta \ d\theta$                                                                                                 | M1       | Use of correct integral. Limits not needed here.  Accept an integral of the form: $kr^{3}\int \sin^{3}\theta d\theta$                                                                                           |
|            | $r^{3} \int_{0}^{\frac{\pi}{2}} (1 - \cos^{2} \theta) \sin \theta  d\theta$ $= r^{3} \left[ -\cos \theta + \frac{\cos^{3} \theta}{3} \right]_{0}^{\frac{\pi}{2}}$ | A1       | Correct integration, ignore limits. Correct expression.                                                                                                                                                         |
|            | $=\frac{2}{3}r^{3}$                                                                                                                                               | A1       | Correct use of limits                                                                                                                                                                                           |
|            | $= \frac{2}{3}r^3$ $\overline{x} = \frac{\frac{2}{3}r^3}{\frac{1}{2}\pi r^2}$                                                                                     | M1       | Complete method to obtain distance.  Use of correct formula. $\rho$ must appear on both sides or neither.                                                                                                       |
|            | $=\frac{4r}{3\pi}$ *                                                                                                                                              | A1*      | Obtain given answer from correct working                                                                                                                                                                        |
|            |                                                                                                                                                                   | [5]      |                                                                                                                                                                                                                 |
| 5b         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                             | B1<br>B1 | Correct mass ratios Correct distances                                                                                                                                                                           |
|            | Moments about AC                                                                                                                                                  | M1       | All terms required. Dimensionally correct or equivalent for a parallel axis. Condone sign errors. If column vectors are used, this mark is awarded once the equation is written separate to the column vectors. |

|    | $8\pi a^2 \times \frac{16a}{3\pi} - 2\pi a^2 \times \frac{8a}{3\pi} - 2\pi a^2 \times \frac{8a}{3\pi}$ $= 8\pi a^2 d$ | A1              | Correct unsimplified equation.                                                                                                                 |
|----|-----------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $\frac{96a}{3\pi} = 8d \implies d = \frac{4a}{\pi} *$                                                                 | A1*             | Obtain given value from correct working. Need to see at least some simplification.                                                             |
| 5c | Moments about perpendicular axis through $A$                                                                          | [5]<br>M1       | Dimensionally correct. Need all terms. Or equivalent for a parallel axis                                                                       |
|    | From A $4a \times 8\pi a^2 - 2a \times 2\pi a^2 + 6a \times 2\pi a^2 = 8\pi a^2 \overline{x}$                         | A1ft<br>A1ft    | Unsimplified equation with at most one error.  Correct unsimplified equation Follow their mass ratio                                           |
|    | $\Rightarrow \overline{x} = 5a$                                                                                       | A1              | Correct only. If measured from <i>B</i> , distance is <i>a</i>                                                                                 |
|    | Correct use of trig to find an expression for $\tan \theta$                                                           | M1              | $\tan \theta = \frac{d}{\overline{x}} \text{ or } \tan \theta = \frac{\overline{x}}{d} \text{ where}$<br>$\overline{x}$ is distance from $A$ . |
|    | $\tan \theta = \frac{4}{5\pi}$                                                                                        | A1              | Only                                                                                                                                           |
|    |                                                                                                                       | <b>[6]</b> (16) |                                                                                                                                                |

| 6a   | In equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1         | Need all three forces.               |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------|
|      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IVI 1      | Dimensionally correct                |
|      | $mg + 4mg \frac{l-e}{l} = 4mg \frac{e}{l}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1         | Unsimplified equation with at        |
|      | $mg + 4mg \frac{m}{l} = 4mg \frac{m}{l}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | most one error                       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1         | Correct unsimplified equation        |
|      | $5l-8a \rightarrow a-\frac{5l}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                      |
|      | $5l = 8e \Rightarrow e = \frac{5l}{8},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A 1 4      | Obtain given answer from             |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1*        | correct working.  Must see $AE =$    |
|      | $AE = l + \frac{5l}{8} = \frac{13l}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Wiust see AL –                       |
| ALT1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1         | Need all three forces.               |
|      | (2l-AE) $(AE-l)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | Dimensionally correct                |
|      | $mg + 4mg \frac{(2l - AE)}{l} = 4mg \frac{(AE - l)}{l}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1         | Unsimplified equation with at        |
|      | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | most one error                       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1         | Correct unsimplified equation        |
|      | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Obtain given answer from             |
|      | $AE = \frac{13l}{8}  *$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1*        | correct working. Must see AE         |
|      | , and the second |            | = -                                  |
| ALT2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1         | Need all three forces.               |
|      | $\begin{pmatrix} l \\a \end{pmatrix}$ $\begin{pmatrix} l \\ -+a \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Dimensionally correct                |
|      | $mg + 4mg \frac{\left(\frac{l}{2} - e\right)}{l} = 4mg \frac{\left(\frac{l}{2} + e\right)}{l}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1         | Unsimplified equation with at        |
|      | l = 4mg - l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | most one error                       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1         | Correct unsimplified equation        |
|      | l $dF = l + l + l = 13l *$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1*        | Obtain given answer from             |
|      | $e = \frac{l}{8}$ , $AE = l + \frac{l}{2} + \frac{l}{8} = \frac{13l}{8}$ *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AI         | correct working                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [4]        |                                      |
| 6b   | Equation of motion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1         | Need all terms. Dimensionally        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | correct. Condone use of a for        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | acceleration.                        |
|      | $\frac{5l}{1+r}$ $\frac{3l}{1-r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>A</b> 1 | Unsimplified equation with at        |
|      | $4mg\frac{5l}{8} + x - 4mg\frac{3l}{8} - x - mg = -m\ddot{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | most one error.                      |
|      | l = l = l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1         | Correct unsimplified equation        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Note: the question states $x$ is     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A 1 de     | measured vertically down.            |
|      | $\Rightarrow -m\ddot{x} = \frac{8mg}{l}x, \ \ddot{x} = -\frac{8g}{l}x *$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1*        | Obtain given answer from             |
|      | l l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | correct working. Must use $\ddot{x}$ |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [4]        |                                      |
| 6c   | Use of $v^2 = \omega^2 (a^2 - x^2)$ with $a = \frac{3l}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | Or use of equivalent correct         |
|      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1         | formula                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                      |
|      | $= \frac{8g}{l} \left( \frac{9}{64} l^2 - \frac{1}{64} l^2 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1         | Correct unsimplified                 |
|      | $-\frac{1}{l}\left(\overline{64}^{\iota}-\overline{64}^{\iota}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Al         | expression for $v$ or $v^2$          |
|      | $v = \sqrt{gl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1         | Correct only                         |
|      | , No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [3]        |                                      |

| 6d | $x = \frac{3l}{8}\cos\omega t$                                                                                                                                      | B1   | Use of relevant formula with correct amplitude $x = \frac{3l}{8}\cos\omega t \text{ or } x = \frac{3l}{8}\sin\omega t$                                                            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Use of $-\frac{l}{8} = \frac{3l}{8} \cos \omega t$ or $\frac{l}{8} = \frac{3l}{8} \sin \omega t \text{ and correct use of } \frac{1}{2} \times \frac{2\pi}{\omega}$ | M1   | Complete method to find $t$ or required time $t = \frac{1}{\omega} \cos^{-1} \left( -\frac{1}{3} \right)$ or                                                                      |
|    | or $ \frac{l}{8} = \frac{3l}{8} \cos \omega t \text{ and correct use of} $ $ \pi - \cos^{-1} \left(\frac{1}{3}\right) $                                             |      | $t = \frac{1}{\omega} \sin^{-1} \left(\frac{1}{3}\right) \text{ with } \frac{1}{2} \text{ period}$ or $t = \frac{1}{\omega} \cos^{-1} \left(\frac{1}{3}\right) \text{ with } \pi$ |
|    |                                                                                                                                                                     |      |                                                                                                                                                                                   |
|    | Required time $\frac{2}{\omega}\cos^{-1}\left(\frac{-1}{3}\right) = \sqrt{\frac{l}{2g}}\cos^{-1}\left(\frac{-1}{3}\right)$                                          | A1   | Or equivalent, accept $1.91\sqrt{\frac{l}{2g}}$ , $1.35\sqrt{\frac{l}{g}}$ , $0.43\sqrt{l}$                                                                                       |
|    | or $\frac{\pi}{\omega} + \frac{2}{\omega} \sin^{-1}\left(\frac{1}{3}\right) = \sqrt{\frac{l}{8g}} \left(\pi + 2\sin^{-1}\left(\frac{1}{3}\right)\right)$            |      | $3.82\sqrt{\frac{l}{8g}}$                                                                                                                                                         |
|    | or $\frac{2}{\omega} \left[ \pi - \cos^{-1} \left( \frac{1}{3} \right) \right] = \sqrt{\frac{l}{2g}} \left[ \pi - \cos^{-1} \left( \frac{1}{3} \right) \right]$     |      | $\cos^{-1}\left(\frac{-1}{3}\right) = 1.91\dots$                                                                                                                                  |
|    |                                                                                                                                                                     | [3]  |                                                                                                                                                                                   |
|    |                                                                                                                                                                     | (14) |                                                                                                                                                                                   |

| 7a | Conservation of mechanical energy:                                                                                           | M1  | All terms required.<br>Dimensionally correct<br>$\cos \theta = \frac{5}{13}, \sin \theta = \frac{12}{13}$                                                                                   |
|----|------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mg(r + r\cos\theta)$                                                                    | A1  | Correct unsimplified equation                                                                                                                                                               |
|    | $\frac{1}{2}mu^{2} = \frac{1}{2}mv^{2} + mg(r + r\cos\theta)$ $v^{2} = u^{2} - \frac{36}{13}gr *$                            | A1* | Obtain given answer from correct working                                                                                                                                                    |
|    |                                                                                                                              | [3] |                                                                                                                                                                                             |
| 7b | Equation of motion                                                                                                           | M1  | All terms required. Dimensionally correct. Condone sign errors and $\sin/\cos$ confusion. Condone use of $R = 0$                                                                            |
|    | $R + mg\cos\theta = \frac{mv^2}{r}$                                                                                          | A1  | Correct unsimplified equation. Condone (strict) inequality the right way round.                                                                                                             |
|    | Use $R0$ and solve for $u^2$                                                                                                 | M1  | Complete method to obtain $u^2$<br>Condone use of $R = 0$ or $R > 0$                                                                                                                        |
|    | $\frac{mv^2}{r} - mg\cos\theta \dots 0$ $\Rightarrow u^2 - \frac{36}{13}gr \dots \frac{5}{13}gr,  u^2 \dots \frac{41}{13}gr$ | A1* | Obtain given answer from correct working.  Must have stated the inequality $R \ge 0$ If there is no reference to $R$ , the max mark in (b) is  M1A1M1A0*                                    |
|    |                                                                                                                              | [4] |                                                                                                                                                                                             |
| 7c | $BC = 2r\sin\theta = \frac{24}{13}r$ Relevant vertical motion                                                                | B1  | Or equivalent $BC = 1.846r$                                                                                                                                                                 |
|    | Eg time to return to the level of BC                                                                                         | M1  | Complete method vertically using <i>suvat</i>                                                                                                                                               |
|    | $t = \frac{2v\sin\theta}{g} = \frac{24v}{13g}$                                                                               | A1  | Correct unsimplified expression for time  Accept $\frac{24}{13g} \times 4\sqrt{\frac{gr}{13}}$ , $\frac{24}{13}\sqrt{\frac{16r}{13g}}$ $\frac{96}{13}\sqrt{\frac{r}{13g}}$ , $0.65\sqrt{r}$ |
|    | Relevant horizontal motion Eg distance travelled by P                                                                        | M1  | Complete method horizontally                                                                                                                                                                |
|    | $= (v\cos\theta)t = v^2 \times \frac{120}{169g}$                                                                             | A1  | Correct unsimplified expression for distance $0.87r$ , $\frac{1920}{2197}r$ , $0.0892gr$                                                                                                    |
|    | $= \frac{16gr}{13} \times \frac{120}{169g} = \frac{160r}{169} \times \frac{12}{13} < 2r \times \frac{12}{13}$                | A1* | Obtain given conclusion from correct working                                                                                                                                                |

|                              | hence falls into the bowl *                                                                                                             |      |                                              |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------|
| ALT 1                        | Horizontal: time, <i>T</i> , required to travel                                                                                         | M1   | Complete method horizontally                 |
| for last                     | the length $BC$                                                                                                                         | 1411 | Complete method horizontary                  |
| 3 marks                      | the length be                                                                                                                           |      |                                              |
| o mans                       | $2r\sin\theta = v\cos\theta \times T$                                                                                                   | A1   |                                              |
|                              |                                                                                                                                         |      |                                              |
|                              | $T = \frac{2r\frac{12}{13}}{4\sqrt{\frac{gr}{13}} \times \frac{5}{13}} = 1.38\sqrt{r}$                                                  |      | Correct unsimplified expression for <i>T</i> |
|                              | V 13 13                                                                                                                                 |      |                                              |
|                              | $t < T$ since $0.654\sqrt{r} < 1.38\sqrt{r}$ hence falls into the bowl *                                                                | A1*  | Obtain given conclusion from correct working |
| ALT 2<br>for last<br>3 marks | Horizontal: speed, <i>V</i> , required to reach <i>C</i>                                                                                | M1   | Complete method horizontally                 |
| 5 marks                      | Quain ()                                                                                                                                | A1   |                                              |
|                              | $-V\sin\theta = V\sin\theta - g\frac{2V\sin\theta}{V}$                                                                                  | AI   |                                              |
|                              | $-V\sin\theta = V\sin\theta - g\frac{2r\sin\theta}{V\cos\theta}$ $\Rightarrow V = \sqrt{\frac{gr}{\cos\theta}} = \sqrt{\frac{13gr}{5}}$ |      | Correct unsimplified expression for $V$      |
|                              | $v < V$ since $\sqrt{\frac{13gr}{5}} < \sqrt{\frac{16gr}{13}}$                                                                          | A1*  | Obtain given conclusion from correct working |
|                              | hence falls into the bowl *                                                                                                             |      |                                              |
|                              | SC: If range formula is quoted                                                                                                          |      |                                              |
|                              | correctly award M1A1M1A1.                                                                                                               |      |                                              |
|                              | Range = $\frac{2v^2 \sin \theta \cos \theta}{2}$                                                                                        |      |                                              |
|                              | Range – ————                                                                                                                            |      |                                              |
|                              | _                                                                                                                                       | [6]  |                                              |
|                              |                                                                                                                                         | (13) |                                              |